

Cellulose Hydrolysis and Integrated Processing Research

May 1-2, 2003

Kiran Kadam
National Renewable Energy Laboratory

Outline

- Goals and Objectives
- Knowledge Gaps & Challenges
- Recent Experimental Work
- Recommendations for Future Work

Goals and Objectives

- Demonstrate integrated enzyme-based cellulose hydrolysis using corn stover (CS) as a model feedstock
 - Develop and apply tools to generate high-quality performance data
 - Characterize process interactions
 - Identify and bridge knowledge gaps

Major Steps in an Enzymatic Process

Knowledge Gaps & Challenges

- Knowledge gaps
 - Performance data under process-relevant conditions
 - Individual unit operations and integrated system
 - Interactions among unit operations
- Challenges
 - Achieving high yields under realistic conditions
 - Obtaining good overall and component mass balance closures

Recent Experimental Work

- Process-relevant lignocellulose saccharification
 - Reduces technical and economic risks
- Enzyme adsorption and hydrolytic performance
 - Improves understanding of cellulose hydrolysis
- Kinetic model for cellulose hydrolysis
 - Facilitates more efficient process development

Experimental System

- Pretreated corn stover (PCS): vertical Sunds reactor
- Shake flasks & bench-scale reactors
- 10%-15% (dry wt) PCS solids
- Enzyme: CPN or Spezyme
- Enzyme loading: 20-45 mg protein/g cellulose
- Temperature: 45°-55°C
- Residence time: 5-7 days

Typical Saccharification Profile with Washed PCS: 45 mg/g protein, 45°C, 10% insoluble solids

Process-Relevant Saccharification

- Extended previous work with washed PCS
- Effect of hydrolyzate conditioning on hydrolysis
 - Similar saccharification performance with neutralized or overlimed hydrolyzate
 - Neutralization used for subsequent work
- Effect of solids levels on hydrolysis
 - Shake flask system mass transfer limited at high insoluble solids levels, e.g., 15% w/w

Effect of Hydrolyzate Level: Unwashed PCS, 45 mg/g protein, 45°C, 10% insoluble solids, 7 days

Effect of Hydrolyzate Level: Unwashed PCS, 45 mg/g protein, 45°C, 10% insoluble solids, 7 days

Enzyme Adsorption and Hydrolytic Performance

- Enzyme adsorption, a key factor
 - Pretreatment
 - Surface area
 - Lignin content
 - Enzyme

$$E_B = \frac{E_{\text{max}} K_{ad} E_F S}{K_{ad} + E_F}$$

Substrate	Glucan content, % (dry wt)
CS, Lot 1	36.9
CS, Lot 2	38.9
PCS, Lot 2 (Most reactive)	59.2
PCS, Lot 1 (Moderately reactive)	52.8
PCS, Lot 1 (Least reactive)	57.9

$$E_B = \frac{E_{\text{max}} K_{ad} E_F S}{K_{ad} + E_F}$$

Kinetic Modeling: Motivation

- Cellulose hydrolysis: major cost in the process
- Kinetic model codifies knowledge and allows in silico predictions
- Actual experimentation resource intensive

Baseline Kinetic Model: Key Features

- Distinguishes between the β-glucosidase and CBH/EG enzymes
- Incorporates potential inhibition by xylose
- Has structure, e.g., to potentially capture effects of
 - β-glucosidase levels
 - Temperature
 - Enzyme adsorption

Hydrolysis Reactions Modeled

Cellulose to cellobiose rx

$$r_{1} = \frac{k_{1r}E_{1B}R_{S}S}{1 + \frac{G_{2}}{K_{1IG_{2}}} + \frac{G}{K_{1IG}} + \frac{X}{K_{1IX}}}$$

Cellulose to glucose rx

$$r_{2} = \frac{k_{2r}(E_{1B} + E_{2B})S}{1 + \frac{G_{2}}{K_{2IG_{2}}} + \frac{G}{K_{2IG}} + \frac{X}{K_{2IX}}}$$

Cellobiose to glucose rx

$$r_3 = \frac{k_{r3}E_{2F}G_2}{K_m(1 + \frac{G}{K_{3G}} + \frac{X}{K_{3X}}) + G_2}$$

Estimated Model Parameters

Parameter	Value	
Independently Established Parameters		
K _{ad-EG/CBH} (g protein/g substrate)	0.4	
$K_{ad-\beta-glucosidase}$ (g protein/g substrate)	0.1	
E _{max-EG/CBH} (g protein/g substrate)	0.06	
E _{max-β-glucosidase} (g protein/g		
substrate)	0.01	
E _a (cal/mole)	-5540	
$R_{\rm s}$	$\alpha S/S_0$, $\alpha=1$	
Parameters Obtained by Regression of		
Saccharification Data		
k _{1r} (g/mg hr)	22.3	
K_{1IG2} (g/kg)	0.015	
K_{1IG} (g/kg)	0.1	
K_{1IX} (g/kg)	0.1	
k _{2r} (g/mg hr)	7.18	
K_{2IG2} (g/kg)	132.0	
$K_{2IG}(g/kg)$	0.04	
K_{2IX} (g/kg)	0.2	
$k_{3r}(hr^{-1})$	285.5	
$K_{3M}(g/kg)$	24.3	
$K_{3IG}(g/kg)$	3.9	
$K_{3IX}(g/kg)$	201.0	

Model Validation: Washed PCS, 45 mg/g protein, 45°C, 10% insoluble solids, 40 g/kg xylose

Model Validation: Washed PCS, 45 mg/g protein, 45°C, 10% insoluble solids, 30 or 50 g/kg initial glucose

Progress in Bridging Knowledge Gaps

- Kinetic model: a new predictive tool
- Process-relevant saccharification
 - Saccharification works with neutralized hydrolyzate
 - Resistance to cellobiose inhibition a desirable trait for next generation of cellulases
- Improves understanding of configuring the overall process to maximize intermediate sugars production

Future Work: Cellulose Hydrolysis

- Evaluate 2nd generation enzyme preparations under realistic conditions
 - Assess wrt conversion yields/rate assumed in process engineering model
- Evaluate other issues
 - Recommend reactor designs for effectively mixing PCS slurries
- Kinetic model
 - Extend model to include 2nd generation enzymes
 - Incorporate enzyme inactivation and hydrolysis capacity factor in kinetic model
 - Use model for in silico process optimization

Future Work: Integrated Processing

- Characterize hydrolyzate conditioning
 - Ca, S balance
- Generate engineering data for separation processes
 - Hydrolyzate and fermentation residue
- Improve carbon/mass balance closure for individual unit operations
 - Apply new analytical tools

Future Work: Integrated Processing (Long Term)

- Integration using a model system
 - Pretreatment
 - Conditioning
 - Saccharification
 - Fermentation
- Demonstrate "robustness" under industrially relevant conditions
 - Necessary to build database for process verification
 - Reduces performance risk

Acknowledgements

- Ali Mohagheghi
- Jeffrey Knutsen
- Eric Rydholm
- Rustin Shenkman